

Pressure Restrictive VSD: When to Intervene?

Amy H. Schultz, MD MSCE

February 22, 2025
Cardiology 2025
Orlando, FL

No disclosures

Scope of this talk

- Patient type
 - Asymptomatic
 - Beyond infancy
 - ≤ 18 years
- VSD type
 - Conoventricular/perimembranous
 - Conal septal hypoplasia/subpulmonic
- PA Pressure: predicted normal, mPAP ≤ 20

Indications to Intervene

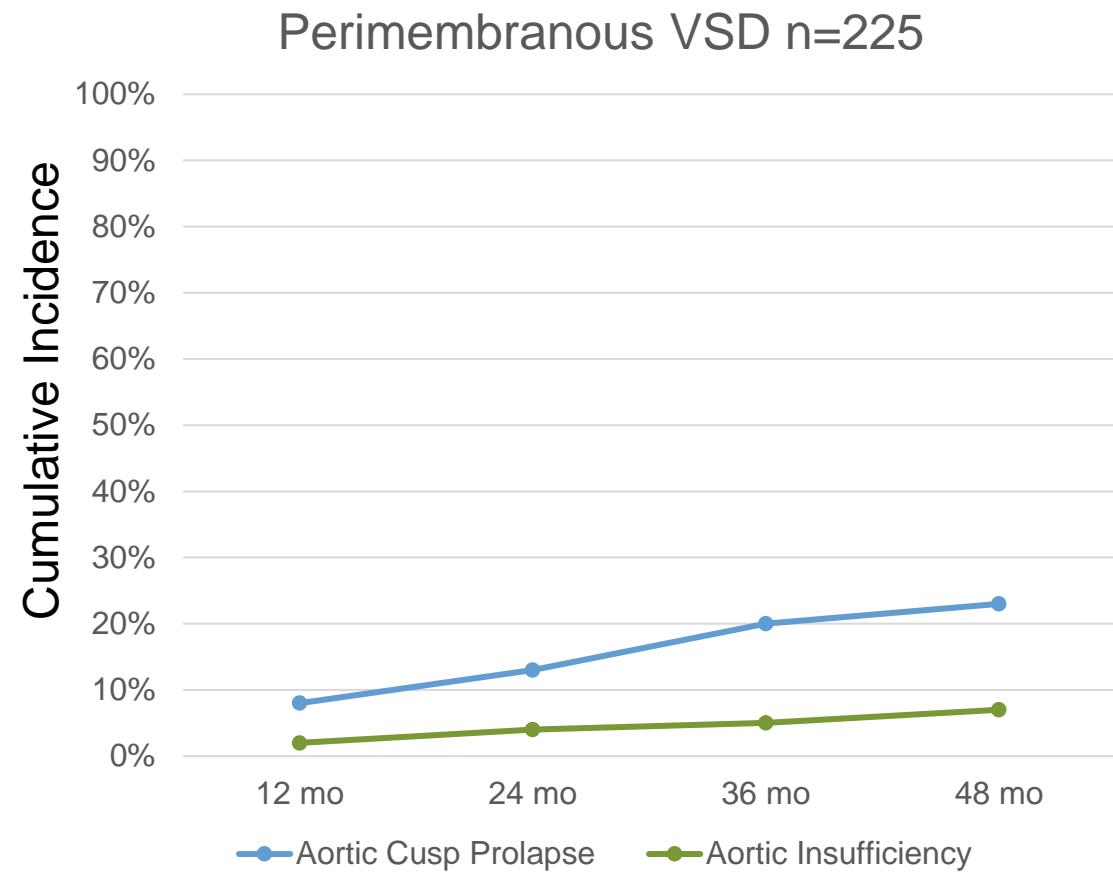
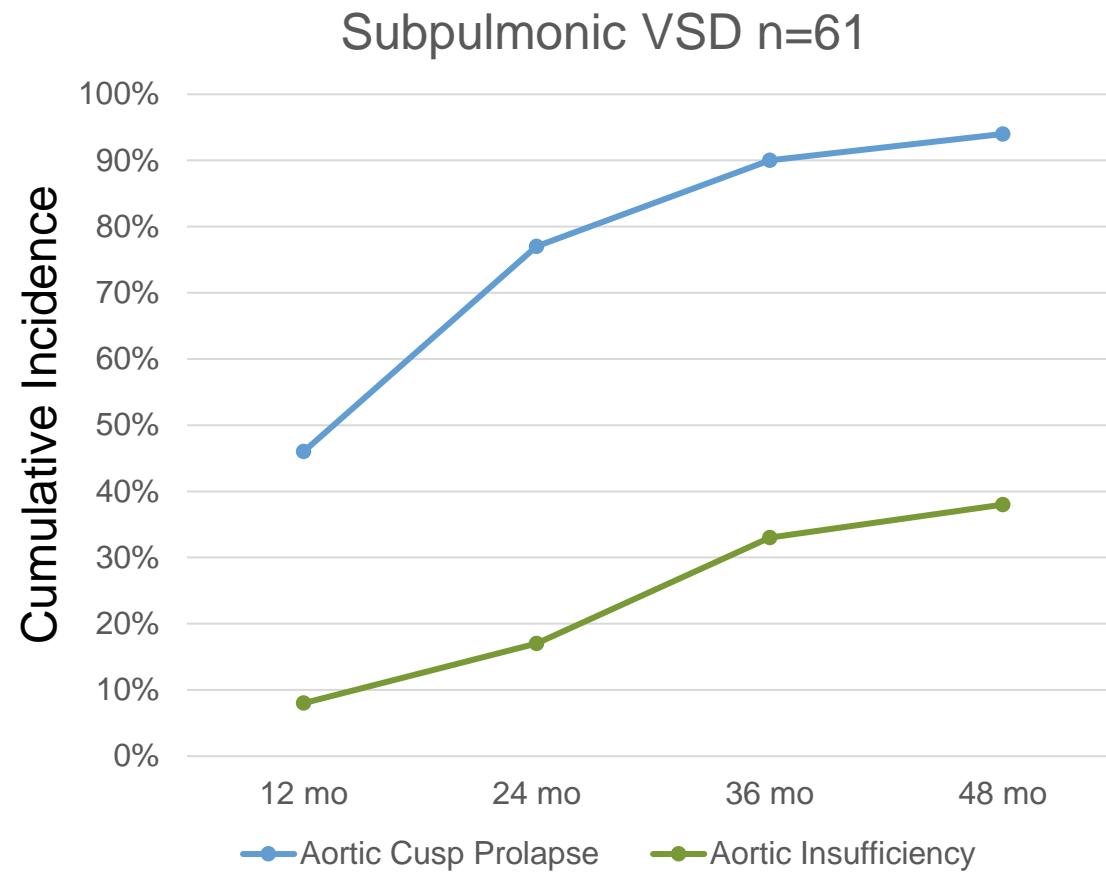
- Anatomic complications
 - Aortic cusp prolapse/progressive aortic insufficiency (AI)
 - Double chamber right ventricle
 - Subaortic membrane
- Endocarditis: may be considered
- Persistent shunt of excessive magnitude
 - What is the threshold?
 - How long do you wait for spontaneous restriction?

Indications to Intervene

- Anatomic complications
 - Aortic cusp prolapse/progressive AI
 - Double chamber right ventricle
 - Subaortic membrane
- Endocarditis: may be considered
- Persistent shunt of excessive magnitude
 - What is the threshold?
 - How long do you wait for spontaneous restriction?

Indications to Intervene

- Anatomic complications
 - Aortic cusp prolapse/progressive AI
 - Double chamber right ventricle
 - Subaortic membrane
- Endocarditis: may be considered
- Persistent shunt of excessive magnitude
 - What is the threshold?
 - How long do you wait for spontaneous restriction?

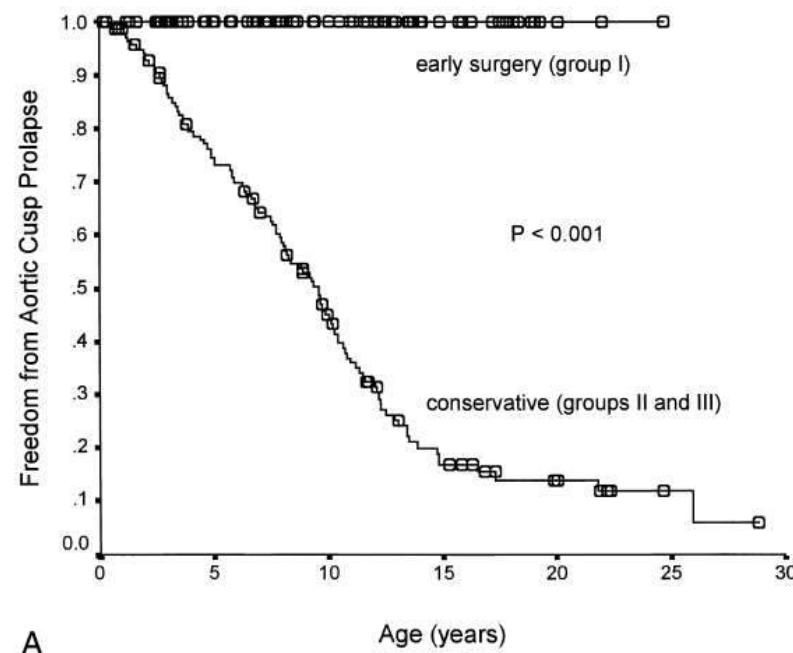


Case #1

- 3 year old, asymptomatic boy
- Conal septal hypoplasia VSD
 - Peak gradient by echo 112 mmHg
 - LVEDD z-score 0.6
 - “Mild” right coronary cusp prolapse but no AI
 - No change in echo over serial follow up

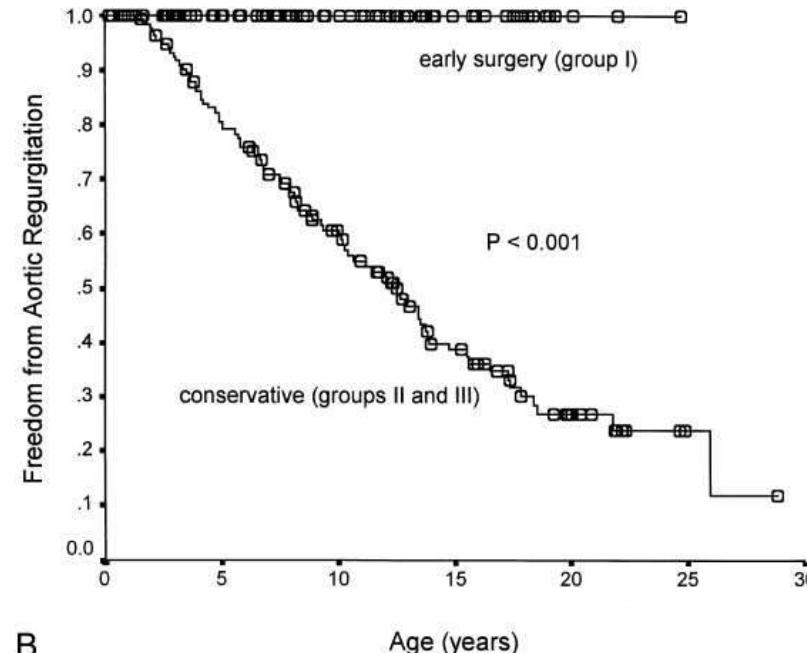
Natural aortic valve complications of ventricular septal defect: a prospective cohort study

Thanarat Layangool ¹, Tawatchai Kirawittaya, Chaisit Sangtawesin, Vichow Kojaranjit, Perapat Makarapong, Amornrat Pechdamrongsakul, Yanisa Intasorn, Putra Noisang

Children < 1 yo with isolated VSD
N=321
Subpulmonic 19%
Perimembranous 70%

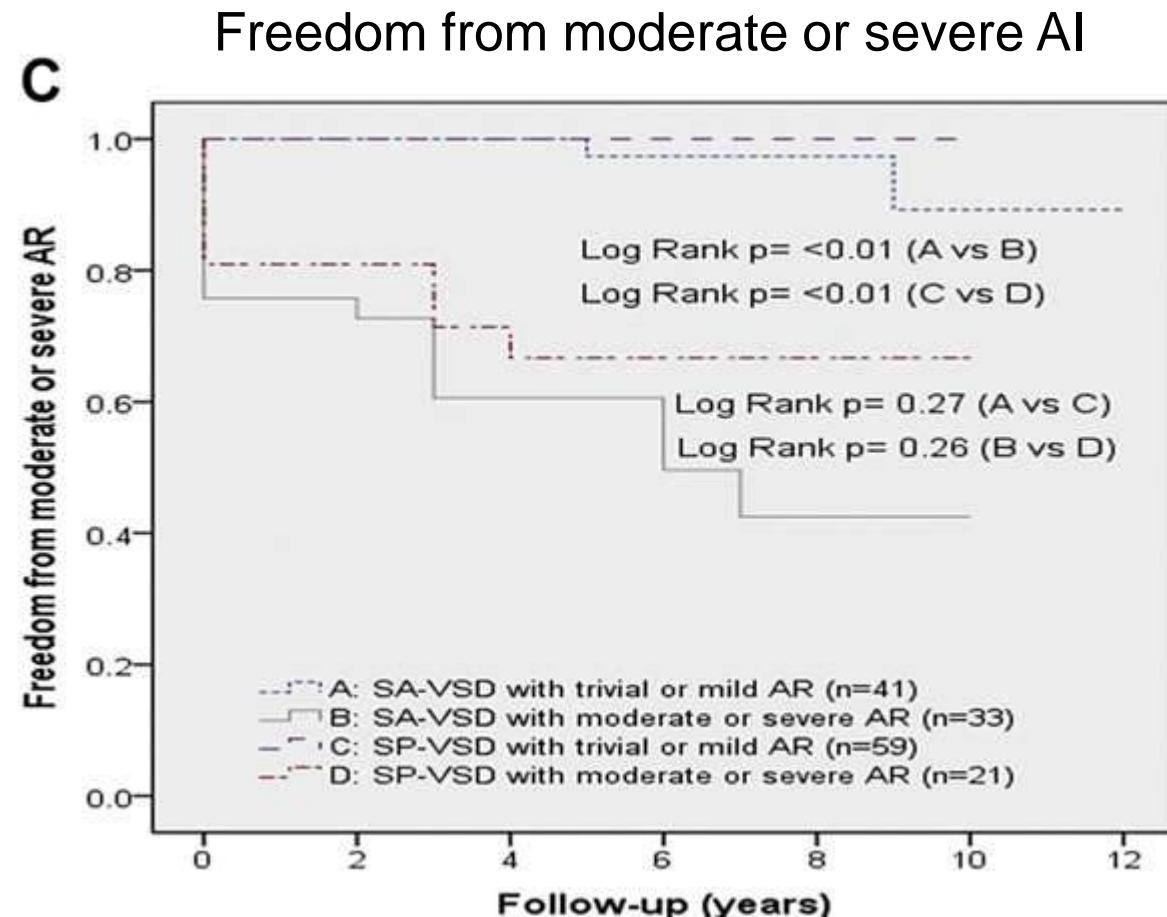


Subpulmonic VSD, Aortic Cusp Prolapse & Insufficiency


214 consecutive patients with subpulmonic VSD

- Group I: n=75 (35%), early surgery for heart failure
- Group II: n=102 (48%), asymptomatic, eventually developed cusp prolapse \pm AI
48/102 (47%) underwent surgery (mean age 9.8 y)
- Group III: n=37 (17%), managed medically, no valvar complications
followed for 6.9 ± 5.8 years (range 0.3 to 24.3)

Freedom from Aortic Cusp Prolapse


Freedom from Aortic Insufficiency

Prognosis of AI after VSD closure

154 patients with VSD/AI underwent surgery from 2006-2012

- Anatomic type:
 - 80 subpulmonic
 - 74 subaortic
- Preop AI:
 - 100 trivial-mild
 - 54 moderate-severe
- Mean age at surgery 10.5 ± 9 y
- Mean postop follow up: 6.3 ± 2.3 y

Summary: VSD with Cusp Prolapse/AI

- Most commonly a concern for conal septal hypoplasia VSD
 - Typically during childhood/early adolescence
- Reasonable to follow, refer for surgery if progressive while AI is still trivial-mild
- Prepare families that they are not “out of the woods” after the first 1-2 years of life

Indications to Intervene

- Anatomic complications
 - Aortic cusp prolapse/progressive AI
 - Double chamber right ventricle
 - Subaortic membrane
- **Endocarditis: may be considered**
- Persistent shunt of excessive magnitude
 - What is the threshold?
 - How long do you wait for spontaneous restriction?

Population-based incidence of IE in VSD

- Population-based cohort study in Denmark using nationwide medical registries
- 8006 patients dx VSD before 2018
- 79,568 randomly selected controls from general Danish population, matched by birth year and sex.
- Median follow up ~23 years

Time period assessed	Incidence (per 10,000 person-years)	HR (95% CI)	Incidence (per 10,000 person-years)	HR (95% CI)
	VSD unrepaired (n=7324)	Controls (n=72765)	VSD surgically closed (n=682)	Controls (n=6803)
Birth-end of follow up	4.8	0.2	28.0 (19.2-40.9)	29.1
From 1 year post dx or surgery	3.8	0.2	19.3 (11.9-31.1)	0.9

Population-based incidence of IE in VSD

- Population-based cohort study in Denmark using nationwide medical registries
- 8006 patients dx VSD before 2018
- 79,568 randomly selected controls from general Danish population, matched by birth year and sex.
- Median follow up ~23 years

Time period assessed	Incidence (per 10,000 person-years)		HR (95% CI)	Incidence (per 10,000 person-years)		HR (95% CI)
	VSD unrepaired (n=7324)	Controls (n=72765)		VSD surgically closed (n=682)	Controls (n=6803)	
Birth-end of follow up	4.8	0.2	28.0 (19.2-40.9)	29.1	0.4	82.7 (37.3-183.2)
From 1 year post dx or surgery	3.8	0.2	19.3 (11.9-31.1)	0.9	0.4	2.4 (0.3-20.6)

Population-based incidence of IE in VSD

- Population-based cohort study in Denmark using nationwide medical registries
- 8006 patients dx VSD before 2018
- 79,568 randomly selected controls from general Danish population, matched by birth year and sex.
- Median follow up ~23 years

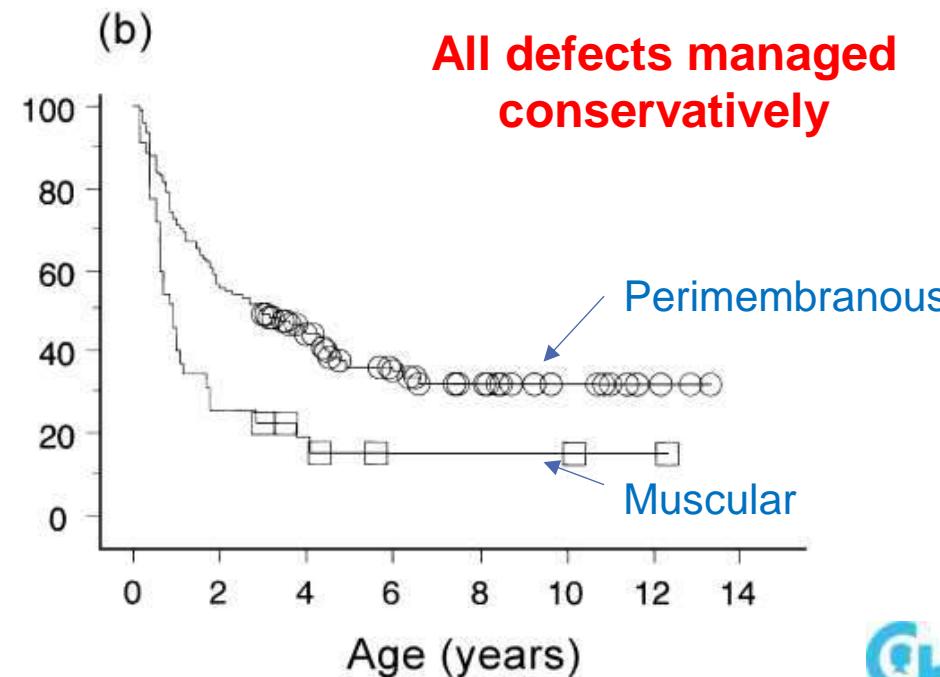
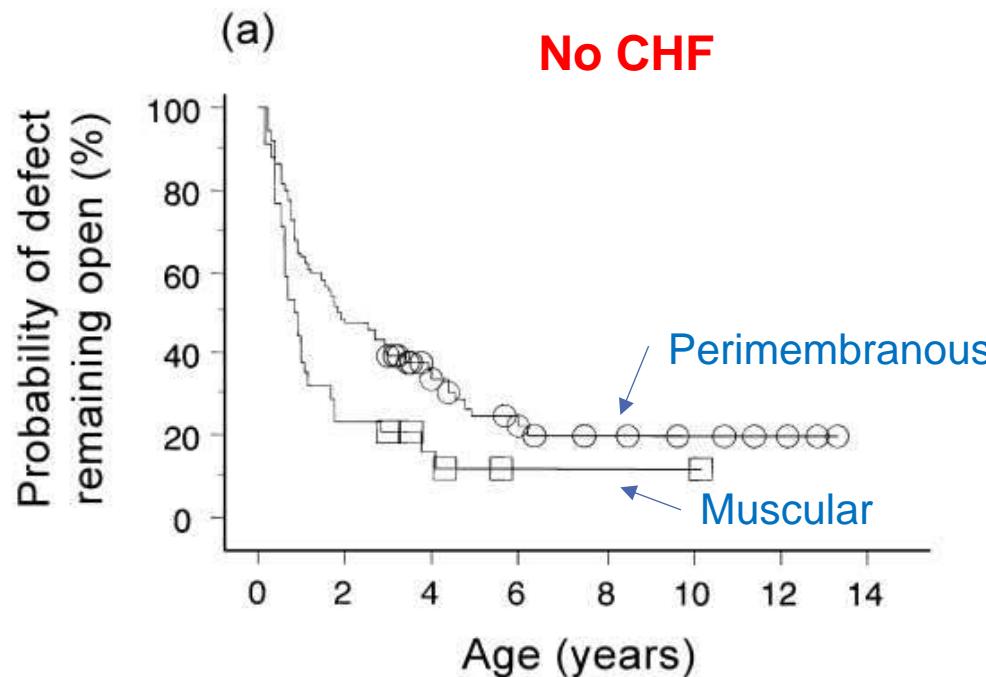
Time period assessed	Incidence (per 10,000 person-years)		HR (95% CI)	Incidence (per 10,000 person-years)		HR (95% CI)
	VSD unrepaired (n=7324)	Controls (n=72765)		VSD surgically closed (n=682)	Controls (n=6803)	
Birth-end of follow up	4.8	0.2	28.0 (19.2-40.9)	29.1	0.4	82.7 (37.3-183.2)
From 1 year post dx or surgery	3.8	0.2	19.3 (11.9-31.1)	0.9	0.4	2.4 (0.3-20.6)

Indications to Intervene

- Anatomic complications
 - Aortic cusp prolapse/progressive AI
 - Double chamber right ventricle
 - Subaortic membrane
- Endocarditis: may be considered
- **Persistent shunt of excessive magnitude**
 - What is the threshold?
 - How long do you wait for spontaneous restriction?

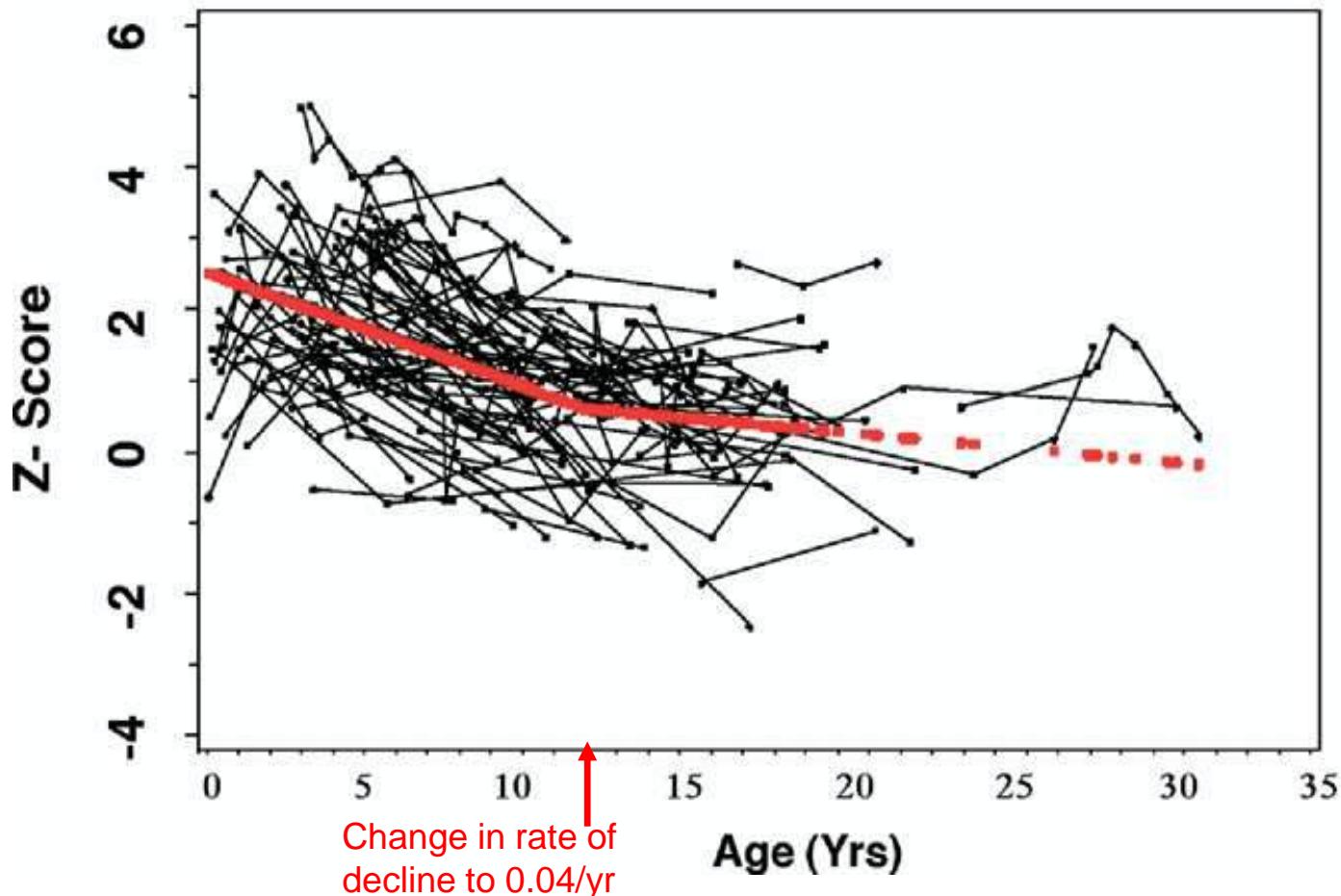
Case #2:

- Conoventricular VSD
 - No CHF
 - Pressure restrictive by 6 weeks of age
- Cardiac Cath at 4 years of age
 - LVIDd Z-score +6
 - Qp:Qs 2:1
 - Mean pulmonary artery pressure 20-21 mmHg. PVR 1.1 WU.



Case #2:

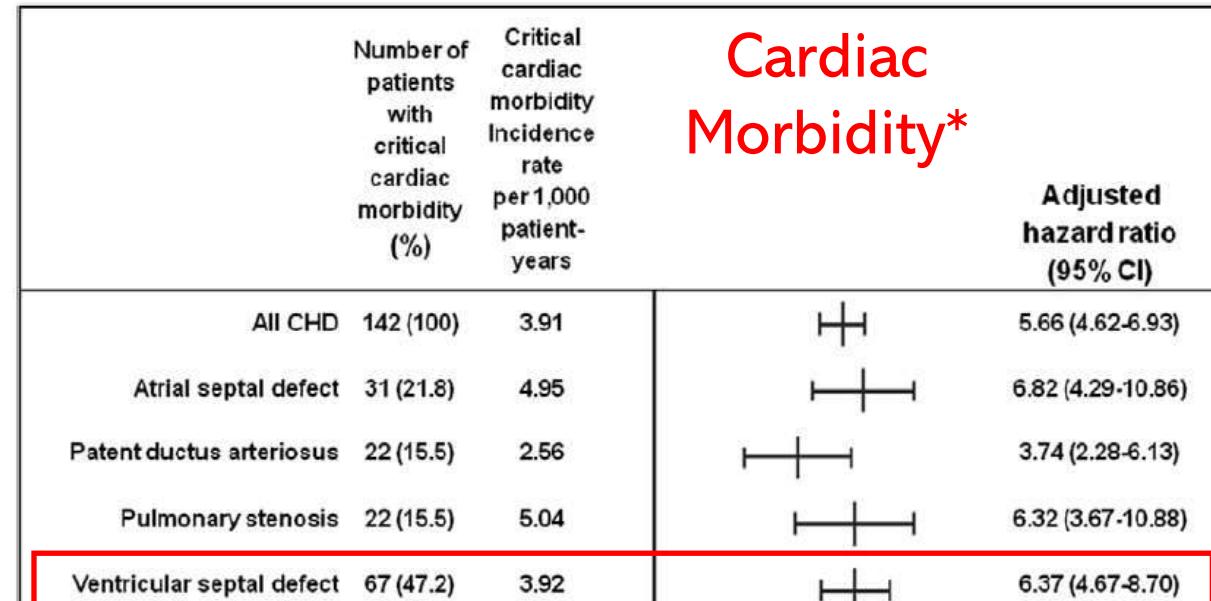
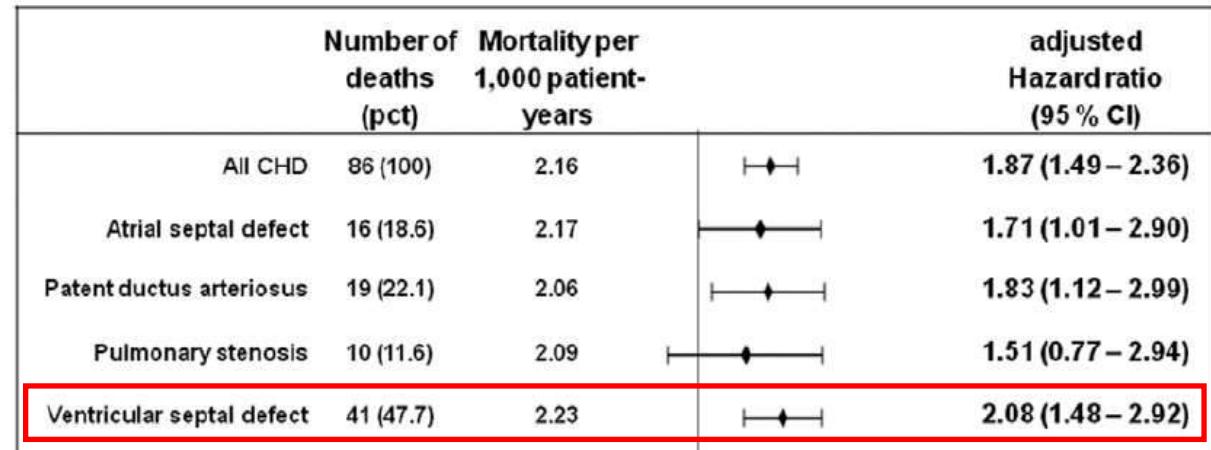
- Followed conservatively
 - Asymptomatic
 - Persistent LV dilation with LVIDd Z-score ~4-6
 - No other anatomic complications
- Age 14 years:
 - LVIDd Z-score +4.7

Spontaneous Closure of VSD


- 225 infants diagnosed with isolated VSD < 3 months of age
- Surgical closure performed in 59 (26%)
- Spontaneous closure rate in remainder:

VSD type	n	% Spontaneous Closure
Perimembranous	159	47%
- No CHF		74%
- With CHF		23%
Subpulmonary	31	10%

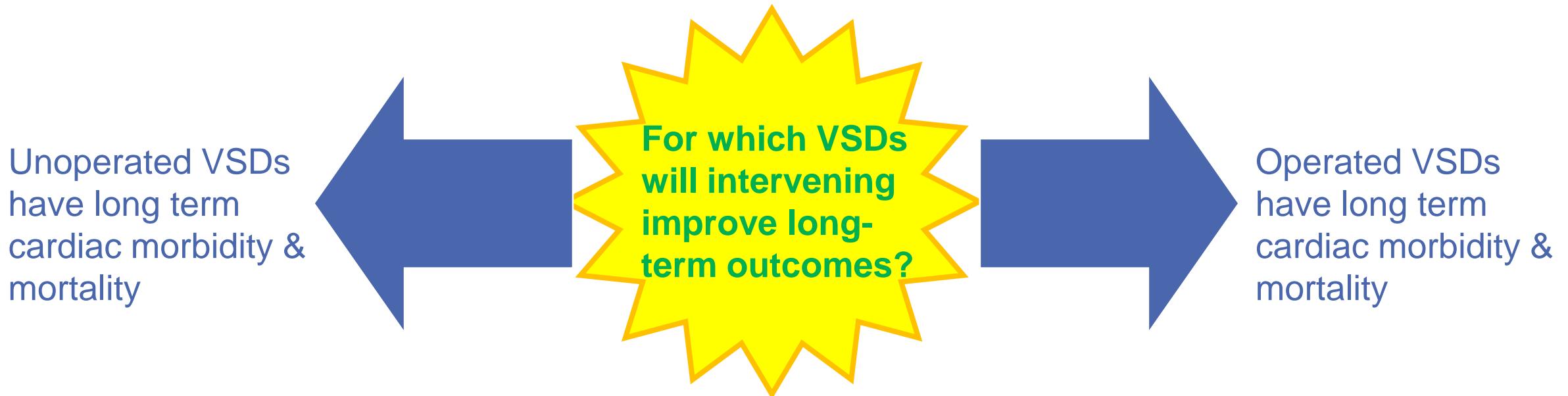
Spontaneous Regression of LV Dilation



Serial Follow-Up of LVED Z-Scores in 70 Patients with Restrictive VSD and Initial LVED Z-Scores >1.0

- None had CHF, PAH, or FTT

Long-term Outcomes “Simple” VSD—mostly unoperated Mortality

- Population based registry: Denmark
 - Born 1948-1973, still alive at age 15 without significant comorbidity
 - VSD n=598, 8.7% operated on <15y
- 10 controls/pt matched birth year and gender
- Follow up complete through 2012 except 2.3% who emigrated
 - Median age at f/u for VSD 45.9y



Long-term Outcomes of VSD: operated and unoperated

- Population-based cohort study in Denmark using nationwide medical registries
- 8006 patients dx VSD before 2018 (8.5% closed surgically)
- 79,568 randomly selected controls from general Danish population, matched by birth year and sex.
- Median follow up ~23 years
- Incidence of morbid events from 1 year post dx or surgery

Morbidity	Incidence (per 10,000 person-years)		HR (95% CI)	Incidence (per 10,000 person-years)		HR (95% CI)
	VSD unrepaired (n=7324)	Controls (n=72765)		VSD surgically closed (n=682)	Controls (n=6803)	
Arrhythmia	12.6	5.9	2.2 (1.8-2.6)	27.6	7.7	3.6 (2.3-5.4)
Pulmonary Hypertension	1.9	0.3	5.7 (3.5-9.4)	4.4	0.3	13.7 (3.7-51)
Heart Failure	8.6	3.0	2.9 (2.3-3.6)	20.8	3.0	7.0 (4.1-12.1)

The Challenge

Questions with no good data:

Mechanisms of the adverse outcomes?

If one mechanism is volume load, **by when** should it be relieved to improve outcome?

Is there an **era effect** in operated VSDs? (later age at repair, surgical technique such as right ventriculotomy)?

How have our ACHD colleagues answered this question?

LV volume load, $Qp:Qs > 1.5:1 \rightarrow$ closure

I	B-NR	<ol style="list-style-type: none">1. Adults with a VSD and evidence of left ventricular volume overload and hemodynamically significant shunts ($Qp:Qs > 1.5:1$) should undergo VSD closure, if PA systolic pressure is less than 50% systemic and pulmonary vascular resistance is less than one third systemic.^{S4.1.3-1}
---	------	--

Proposed approach

- Pressure-restrictive VSD with persistent LV dilation but no anatomic complications
 - Conal septal hypoplasia type: recommend surgery given low likelihood of spontaneous closure, high likelihood of aortic valve complications
 - Conoventricular type:
 - Observe for decrease in dilation
 - LVIDd Z-score >2 at age 12 years \rightarrow cMR for Qp:Qs, LV volume
 - Qp:Qs >1.5 , evaluate for transcatheter closure
 - If not a candidate for transcatheter closure, consider surgical closure

Case #2

- Age 14 years: LVIDd Z-score +4.7
- Age 16 years: Cardiac Cath
 - Baseline Qp:Qs 1.9:1, mPAP 12, PVRI 0.7 WU/m²
 - ADO II placed in TV windsock, small residual shunt
 - Developed hemolysis, resolved by 5 months post-procedure
- Age 18 years
 - Small residual VSD
 - LVIDd Z 2.5
 - cMR:
 - Qp:Qs 1.1:1
 - Top normal LVEDV 95 mL/m²
 - LVEF 68%

Thank you

NHS I & II

Group	Severity Class	N (NHS-1)	PA Pressure	Qp:Qs	Rp:Rs
Ia	Trivial	390	Low*	<1.5	
	Trivial/mild	6	Low*	Missing	
Ib	Mild	234	Low*	≥1.5	
II	Moderate	328	High		<0.2 or Rp≤4
	Moderate-severe	27	High	>1.2 or age <2y	Missing
III	Severe	189	High		≥0.2, <0.7 or Rp>4
IV	Eisenmenger	98	High		>0.7

*Pressure low = PA/Ao <0.3 or MPA mean pressure <20 mmHg or MPA systolic pressure <35 mmHg

- Of the original 630 trivial-mild participants, only 318 (50.4%) were fully re-evaluated at NHS-II
- 24% of trivial-mild participants managed surgically
- For the mild group, survival free from operation at 25 years was 48.5%

Ventricular Septal Defect and Aortic Valve Regurgitation: Pathophysiology and Indications for Surgery

James S. Tweddell,^{*,‡} Andrew N. Pelech,^{†,‡} and Peter C. Frommelt^{†,‡}

Table 1 A Summary of Hemodynamic Characteristics of Ventricular Septal Defects With Aortic Valve Prolapse With or Without AI

Study	Year	n	VSD Position	No. With AVP With or Without AI	Qp/Qs	PA Pressure (mmHg)	
						Systolic PA Pressure	Mean or Median PA Pressure
Schmidt et al ¹⁹	1988	48	SA	28	Mean, 1.5 ± 0.5		NA
Rhodes et al ²⁰	1990	92*	PM	62	Median, 1.6		Median, = 15
			SA	21	Range, 1 – 4		Range, 4 – 36
Komai et al ¹³	1997	27	SA	12	Mean, 1.44 ± 0.47		Mean, 22.0 ± 16.3
Sim et al ²¹	1999	128	SA	36	Range, 1.1 – 2.6		NA
Lun et al ¹⁷	2001	214	SA	102	Mean, 1.6 ± 0.6	Mean, 28.2 ± 11	
Cheung et al ²²	2002	135	SA	56	Mean, $1.7 \pm 0.6\$$	Mean, $30.5 \pm 9.5\$$	
					Mean, $1.8 \pm 0.7 $	Mean, $28.2 \pm 5.7 $	
Chiu et al ¹⁸	2005	677	SA	209	Mean, 1.62 ± 0.92		Mean, 15.7 ± 7.0
			PM	103	Mean, 1.71 ± 0.77		Mean, 17.1 ± 8.3
			MO	61	Mean, 1.45 ± 0.64		Mean, 13.4 ± 5.2

Abbreviations: SA, subarterial; PM, perimembranous; MO, muscular outlet; AVP, aortic valve prolapse; AI, aortic insufficiency.

*Position of VSD unknown in 9 patients.

§Patients with AVP and < moderate AI = 39.

||Patients with AVP and \geq moderate AI n = 17.

Other Long-term Functional Outcomes

- Relatively small studies have identified deficits in adults with both surgically repaired VSDs and small unoperated VSDs:
 - Pulmonary function:
 - At rest: surgically repaired VSDs
 - With exercise: surgically repaired and unoperated VSDs
 - Exercise capacity
 - Biventricular contractility: rest and exercise

Eckerstrom *Am J Cardiol* 2020;125:1710–1717

Eckerstrom *International Journal of Cardiology* 306 (2020) 168–174

Maagaard *J Am Heart Assoc.* 2020;9:e015956.

Maagaard *Am J Cardiol* 2020;133:139–147

Heiberg *International Journal of Cardiology* 194 (2015) 2–6